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SUMMARY

The cometary nucleus is considered in the hydrodynamic sense as a source
located in a supersonic stationary plasma flow from the Sun. At the boundary of
the divide between the source's and stream's media the pressure is defined by
the Newtonian formula,

It is possible to explain the plasma head configuration and the cylindrical
shape of the type-I tail. The shock wave recession is estimated by comparing
with the solution for a source located in an incompressible medium,
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It has been generally admitted lately that the type-I cometary tails
are conditioned by comet atmosvhere interaction with the solar corpuscular
streams., It is noted at the same time that the ionized tails are linked, first
of all, with the quasistationary component of solar corpuscular radiation,
that is, the solar wind [1]. This is why it appears to be possible to subdivide
the events in type~I tails and in plasma heads into two groups — the stationa-~
ry and nonstationary.

The stationary events are conditioned by the solar wind; they would zlso
take place in the case when the wind itself is strictly stationary. Referred
to here are the configurations of the head and the cylindrical shape of the
tail. The contracting shells, the flapving rays and the acceleration of nebu-
lus formations must also be related to stationary events, ory, to be more preci-
sey, to statistically stationary events (according to the above characteristics).

The nonstationary events are conditioned by periodical corpuscular
streans, by their structure and partly by the nonstationary state of the
wind [3]. The latter may be represented as a certain "modulating factor®
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suverimposing itself uvon a statistically stationary backsround. Comet
flaresy correlating with geoactive streams are in particular referred to
nonstationary events,

It will be shown below that the configuration of the head and the
cylindrical shape of the tail may be explained by considering the stationary
solar wind flow past the comet,

£t solar wind interaction with the comet the length of the free path
of ions is rreat: it iz compar=ble with the characteristic dimension of the
comet, But the solar wind carries along a weak magnetic field, and there is
every reason to assume thot the field in comets is not wezker than the inter-
planetary field [2]. What should be compared in the case of 2 magnetie
field with a characteristic dimension is the gyroradius®of ions and not the
free path; and we may consider tha in scales greater by comparison with it,
the plasma is a continuum [2, 4]. Thus, for a field 5 - 10-5 gauss (the mean
value in the solar wind) at a velocity of 3 - 107 cm/sec the gyroradius is
6 + 107 enmy while the characteristic dimension of the comet -~ the diameter
of the head — is 10-°~ 101l¢n. Besides, according to [4], for the computa-
tion of solar wind flow past the Earth's magnetosphere, whose characteristie
dimension coincides with that of a large comet, standard gas dynanics method
mzy be apnlied provided we assume Y = 2 (the particle motion in the mzgnetic

field has two dergrees of freedom); as to the pressure, we may understand the

sum . ¥,
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where p* is the gas pressure. The lach 8] 4 PR
number M is substituted by the Alfvén >
Mach number

1 2
I
M= V/Vp, Fig. 1
where V 4is the velocity of the unperturbed

flow and VA is the Alfvin velocity in the unperturbed flow.
In the current note we shall forego the consideration of the specific
effects of the magnetic field, for we consider that by ascribing it the state

of "econtinuum", its role is being limited.

* the word gidroradius" used in the original text seems to be a misprint
for "gyroradius", it is thus interpreted zccordingly.



The ion component of the comctary atmosphere emerges aprarently
in a certain region surrounding the hard nucleus, and we may consider this
recion as the "source gzone'.

In the first aprroximation we shall estimate that the cometary plasma
flow takes place at constant density and the source of ions is a point source
situated in the comet's nucleus,

A supersonic flow passes around the source (for the solar wind
My ~ 8) and it is guite probable that a stationary collisionless shock wave
forms at the same time from the comet!s head upward along the flow [5].

Following are the considerations leading to such an assumption.

The comet's atmosphere constitutes a continuum, so that the solar wind must
flow past it as if 4t were a certain obstacle, of which the dimension coin-
cides with the characteristic dimension of the comet. But the diameter of
the head of a large comet is of the order of 1010 — 1011 cny that is, equal
or grecater than the characteristic dimension of the Earth's magnetosphere;
consecuently, for the solar wind the comet is an obstacle comparable with
the Earth. Therefore, there must exist azhead of a large comet a shoeck wave
analogous to the shock wave zhead of the mzgnetosphere.

The problem of a high surersonic flow of compressed gas past the
source is in many traits comparable with the problem of a flow past a blunt
body, so that its exact solution cannot, at present, be obtained in a general
form and an approximate solution must be sought for.

The existing methods for resolving the problems of flow past axi-sym-
metrical and flat bodies may be subdivided into two groups. In the first
group the nonstationary problem is solved and then the solutions for great t
are considered, whereas in the second group the qualitative motion pattern
is postulated [6]. In the problem about the source it is preferable to postu-
late the latter, for this method is simpler and it gives results agreeing
well with exverinment.

e shall start from the following assumption: an outgone shock wave
is forming upward along the flow from the source; the gas, ejected by the
gource, is bounded by a certain surface, of which the shape is determined
by the eguality of pressure of two media [Fig. 1.

It is proposed to conduct in the following the total solution of this

problem. For the moment we shall limit ourselves to an aprroximate consicer -




ation for which we shall mazke use of the Newton theory in the first appro-
mation,

According to this approximation the surface of the jump coincides
with that of the body or the surface, bounding in our case the gas
source. As is shown by experiments on the flow past axi-symmetrical and
plane bodies, the best agreement of computed data with the experimental
is provided by the modified Newton formula for the pressure on body's sur-
face [7]:

{ . .
P =MV’ sintaq,

where o is the inclination angle of surface element to the direction of
the incident flow;vh ané Vy are respectively the density and the velocity
of the flow. The factor cp‘ for blunt bodies is a function of the Mach num-
ber and of isentrope indicator Y [7]. Its variation region is not great;
it oscillates within the limits 1.25 = 2,00 for M varying from 1 to ©© and
and Y= from 1 to 5/3 . For M =8 and Y= 2 (solar wind) cp" = 1,67.
Denoting the pressure in the forward part of the surface, where the shock

wave is perpendicular, by p,, we obtain:

p = posintua, (1)

For a flow with constant density the approximate solution may bve
obtained by the method given in the work [8] for the calculation of plasna
flow past a linear current. We shall apply here this method only for the
plane problem, which is precisely what we shall be assuming in the following.

Let us now postulate that in the plane &, where the true flow takes
place, the source is at the origin of the coordinates, the source's gas
occuplies a region G, bounded by the curve S, which is the current line.
Let the analytical function g = z({) materialize the conformal transform-
ation of the interior of a unitary radius circle with the center at the ori-~
gin of the coordinates in the plane { to the region G in such a fashion
that the point z =0 correspond to the point £ = 0. In this case, to the

conplex flow potential in the region G —W (z) will correspond the complex

" flow potential in the unitary circle — W (), of which the following is known :
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— a) the source must be located at the center of the circle;

— b) the circumference of unitary radius must be the curvent line;

— ¢) there must be either inside the circle or on the circumference
a discharge, equal in power to the source, for in the opposite case there
can be no stationary flow;

— d) at =z ({) transformation the point, at which the discharge outlet
is located, must drift into an infinitely remote point,

Let us consider the potential

W= ln(—g——-_?:)—z’:, (2)

W constitutes tke potential of the source of power m at coordinate origin
and of the discharge at point [ (1.0) of double power. The entire flow of
the source's medium is concentrated inside the circumference of unitary radius
constituting the current line. In this way the potential (2) satisfies the
conditions a, b, e¢. That it satisfies also the condition 4, is something
that will be ascertained from the following.

We shall seek a function z =z ({), materializing the conformal trans-
formation of the interior of the circle of unitary radius to the region G.
The curve S in the plane 2z is determined by the equality of pressures of
source's gas and incident flow, Making use of this, we shall obtain from (1)
and the Bernoulli equation the boundary condition for the flow velocity of
source's medium

2 = 2 205, (3)
Prw

where ?w is the source's gas density. The velocity in the plane g is linked
with that in the plane & as follows :

d d
e =2 |15

1 )

Taking into account the boundary condition (3), we shall obtain:

du . dz _2[7_0
, BE =4 rcoxa "az , Where ¢ =V pw )

The ziven correlation refers to the rerion's boundary, and this is why

|dt] =dp and cosa |dz| =dz.
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‘Je £ind the derivative dw/d{ from (2). Substituting these values into the
preceding equalily ané integrating, we obtain
ln-i~(1—coscp)+c,=—-c—x. ' (4)7
2 m }
The sign minus in the right-hand part follows from the normalization: at
¢—+0,z—+00 since we estimate the flow velocity as directed toward the side
of x increase; ¢3 is the integration constant.

The equality (4) gives the value of the real part of the function
sought for on the circumference of unitary racius. Since the real and imagi-
nary parts of the analytical function are conjugated harmonic functions, the
imaginary part of z = z(l) on the circumference may be found as follows :
let us teke the expansion [9]

1 1 cos kg
2 ST eos q) -

q
h=1 1

Now the equality (4) may be written

. __ v cosky

2m -~
-

+ln2- ;Ci.

The conjugated harmonic functions are determined with a precision to the
constant addend and this is why

o
c sin k T—
it =d——+a="21, (5)

2m R={ 2

From considerations of symmetry we shall assume that at =%, y = 0,
whence it follows ¢ = O, The value of the constant in (4) is determined
from the Schwartg integral by the requirement 2z =0 at £= 0. Computing
the integral we shall obtain cj =2|n2ZTaking this into account and excluding

@ from (4) and (5), we shall find the curve bounding the source's gas

c ¢
—z=—1Incos

—In-2. 6
m 2m y—ln ,

Comparing this curve with the curve (9) from [8], we see that they
coincidey this apvarently may be explained by identical symmetry of the

vortex of the magnetic field and the hydrodynamic source.
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If the comet is treated as a source, the curve (6) gives the con-
figuration of the head, It is however customary to estimate that the con~
tour of the head is described by a catenary [2]. Iet us represent the
formula (6) and the catenary in the form of series:

2m

c m m c Toad
= —-—1 —f 2= =2 —_— 24
. ncoszmy 2In2 p ln2c+ay+

Ym0
r o= y 1 1
x ach—a at -ty

We see that the second and the third terms of the expansion coincide al-
most exactly (the first is immaterial, for it denotes the transfer along
the axis x). Therefore, the curve (6) satisfies the observation data: it
describes the configuration of the comet's head and explains the cylindrical
shape of the tail [11].

It should be noted that the catenary for the configuration of the
comet's head was obtained in the work [12], where the nonstationary problem
was resolvaed in the assumption that the contour of the head is deterzined
by the shape of the magnetiec lines of force.

The curve (6) bears the designation of "catenary of equal resistance".
The function, materializing the conformal transformation of the interior

of unitary radius circle to the interior of this curve, will be written

2m 1

="

c 1-—¢°
Eliminating [ from the potential (2) with the aid of the formula
we shall find the source's gas flow potential in the plane g:

C
w=—.2.z—- min{er2m — 1),

Hence it is easy to find the equation of current lines:

R c
sin--—y
c « s
—_— = l" Cos By y +———i" - B £
m -

c
a0
g(nf+2my
where W is only a function of the current's line, It is evident that at

-£=mtm=QLZm)
m



8.

we shall obtain the boundary, that 4s, the curve (6). The lines of current

¥ ¥
—=4025n1 and —:==+05g
m m

are plotted in Fig. 1.

The diameter of the head or, which is the same, the width of the
tail, constitute the comet'!s characteristic dimension. It is evident that
this is the distance between the asymptotes of current's boundary line ( [ in
Fir. 1), equal to (2m/c) x. It is possible to estimate the dependence of
tail's width on the quantity of gazs emitted in the nucleus. We shall denote
the latter quantity by Q; it is evident that Q ~ ml and that consequently
L~va.

We can not find the distances of jump discontinuity recession in the
Newtonian approximation ( AB in Fig. 1l). However, we may estimate this quan-
tity aprroximately as follows.

Assume that behind the shock wave the flow takes place with constant
density. Such an admission is often made in the theory of hypersonic flows.
Of interest to us will be only the resion near the ''mose'" of the comet (A),
that is, the region of small y, where the shock wave is nearly perpendicu-
lar.

let us take for the solar wind the following data: H~5 - 10'5 gauss,
the gas pressure is of the order of the magnetic, the velocity and density
are respectively 3 -107 em/ sec and 5 cm"3. It is easy to calculate that
at the same time the pressure pj] is by one order smaller than the term
P]_Vlz, this is why we postulate py =0, Then for a perpendicular shock wave

we shall have

1 4 | 4
Ps y+1 ) v P1Yy 1 )

.__,4=—————-—=.‘, = " =-

o 7

Pi Y -— 1 PI o2

where the index 1 refers to the solar wind (which, for brevity, we shall
refer to as flow) prior to the passage of the shock wave, the index f -
after its passage.

We shall neglect the distortion of the shock wave in the region of
sma2ll y, and consecguently, the flow's vorticity.

ile shall consider a source of power m, placed in the flow of an in-
compressible fluid, uniform at infinity. The complex potential of the source
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in the flow has the form [10]

wy=—Uz—mlnz,
where U is the flow velocity =zt infinity. The potential Wy is related to
the case, where the fluids of the source and of the flow have identical den-
sities, but in a physical problem this can not by fulfilled. Thus, in parti-
cular, the density of the cometary gas is substantially greater than that of
the incident flow., In this ease the potentials for the flow and for the source
will be respectively written as

m
w;=—uz»alnz and i1 and We=—alz--ming,

vhere o is a constant, whose value is found from the condition of pressure
equality of the two media at the houndary of the divide.
In the Bernoulli eguation

Pty
,)+2V—C

the constants must have different values for the source and for the flow,
for in the opposite case it may be demonstrated that the densities of the fluids
are equal, At the point A (Fig. 1) the velocities are zero, and we may obtain

from the equality of pressures
Cipj = Cupo.

At any point of the boundary of the divide Pw=ps and from these equzlities
and the Bernoulli ecuation we shall obtain

Q= (pf/ Pw) A,
From the potential W or W, we may find the line bounding the fluid
of the source: U
a

= ctg—m vy
(See ref.[10]). It is easy to see that this curve coincides nearly exactly
with the curve (6) for small y and on the condition U =¢/2In.2 , that is,
the comet's configuration near the "nose' agrees with the one that would occur
at flow past it by an incompressible fluid, uniform at infinity. Consequently,

it may be conecluded that the shock wave settles at the distance over which the

the velocity of the incompressible flow coincides with the velocity Ve of (7).
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The velocity of the incompressible flow past the source is

and at y =0 we shall obtain b= m/a (U — V), where b is the distance
between the source and the shock wave. Ve shall postulate U = ¢/ 21n-2«x
and m, that is the power of the source, may be expressed for the comet's

nuclens by the width of the tail [, utilizing formula (6) : m= —2671 . *)

The distance of the jump disontinuity recession is b - a, where
a=2m1ln2/¢c (OA in Fig.1l).For the above-assumed properties of the
flow

We finally obtain A = 0.35 [ . Therefore, at approximate considera-
tion, the velocity of the incident flow V,; and the density ratios pi/pw
influence the value of shock wave recession through the characteristic
dimension of the comet only. k

In conclusion I erpress my gratitude to S. A . Kaplan for his guidance
in the performance of the work.
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